4-byte signature: The signature is: {'P', 'A', 'C', 'K'}
A header appears at the beginning and consists of the following:
The header is followed by number of object entries, each of which looks like this:
The trailer records 20-byte SHA-1 checksum of all of the above.
Valid object types are:
OBJ_COMMIT (1)
OBJ_TREE (2)
OBJ_BLOB (3)
OBJ_TAG (4)
OBJ_OFS_DELTA (6)
OBJ_REF_DELTA (7)
Type 5 is reserved for future expansion. Type 0 is invalid.
Conceptually there are only four object types: commit, tree, tag and blob. However to save space, an object could be stored as a "delta" of another "base" object. These representations are assigned new types ofs-delta and ref-delta, which is only valid in a pack file.
Both ofs-delta and ref-delta store the "delta" to be applied to another object (called base object
) to reconstruct the object. The difference between them is, ref-delta directly encodes 20-byte base object name. If the base object is in the same pack, ofs-delta encodes the offset of the base object in the pack instead.
The base object could also be deltified if it’s in the same pack. Ref-delta can also refer to an object outside the pack (i.e. the so-called "thin pack"). When stored on disk however, the pack should be self contained to avoid cyclic dependency.
The delta data is a sequence of instructions to reconstruct an object from the base object. If the base object is deltified, it must be converted to canonical form first. Each instruction appends more and more data to the target object until it’s complete. There are two supported instructions so far: one for copy a byte range from the source object and one for inserting new data embedded in the instruction itself.
Each instruction has variable length. Instruction type is determined by the seventh bit of the first octet. The following diagrams follow the convention in RFC 1951 (Deflate compressed data format).
This is the instruction format to copy a byte range from the source object. It encodes the offset to copy from and the number of bytes to copy. Offset and size are in little-endian order.
All offset and size bytes are optional. This is to reduce the instruction size when encoding small offsets or sizes. The first seven bits in the first octet determines which of the next seven octets is present. If bit zero is set, offset1 is present. If bit one is set offset2 is present and so on.
Note that a more compact instruction does not change offset and size encoding. For example, if only offset2 is omitted like below, offset3 still contains bits 16-23. It does not become offset2 and contains bits 8-15 even if it’s right next to offset1.
In its most compact form, this instruction only takes up one byte (0x80) with both offset and size omitted, which will have default values zero. There is another exception: size zero is automatically converted to 0x10000.
This is the instruction to construct target object without the base object. The following data is appended to the target object. The first seven bits of the first octet determines the size of data in bytes. The size must be non-zero.
The header consists of 256 4-byte network byte order integers. N-th entry of this table records the number of objects in the corresponding pack, the first byte of whose object name is less than or equal to N. This is called the first-level fan-out
table.
The header is followed by sorted 24-byte entries, one entry per object in the pack. Each entry is:
The file is concluded with a trailer:
Pack Idx file:
-- +--------------------------------+ fanout | fanout[0] = 2 (for example) |-. table +--------------------------------+ | | fanout[1] | | +--------------------------------+ | | fanout[2] | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | fanout[255] = total objects |---. -- +--------------------------------+ | | main | offset | | | index | object name 00XXXXXXXXXXXXXXXX | | | table +--------------------------------+ | | | offset | | | | object name 00XXXXXXXXXXXXXXXX | | | +--------------------------------+<+ | .-| offset | | | | object name 01XXXXXXXXXXXXXXXX | | | +--------------------------------+ | | | offset | | | | object name 01XXXXXXXXXXXXXXXX | | | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | | | offset | | | | object name FFXXXXXXXXXXXXXXXX | | --| +--------------------------------+<--+ trailer | | packfile checksum | | +--------------------------------+ | | idxfile checksum | | +--------------------------------+ .-------. | Pack file entry: <+
packed object header: 1-byte size extension bit (MSB) type (next 3 bit) size0 (lower 4-bit) n-byte sizeN (as long as MSB is set, each 7-bit) size0..sizeN form 4+7+7+..+7 bit integer, size0 is the least significant part, and sizeN is the most significant part. packed object data: If it is not DELTA, then deflated bytes (the size above is the size before compression). If it is REF_DELTA, then 20-byte base object name SHA-1 (the size above is the size of the delta data that follows). delta data, deflated. If it is OFS_DELTA, then n-byte offset (see below) interpreted as a negative offset from the type-byte of the header of the ofs-delta entry (the size above is the size of the delta data that follows). delta data, deflated.
A 4-byte magic number \377tOc
which is an unreasonable fanout[0] value.
A 4-byte version number (= 2)
A 256-entry fan-out table just like v1.
A table of sorted 20-byte SHA-1 object names. These are packed together without offset values to reduce the cache footprint of the binary search for a specific object name.
A table of 4-byte CRC32 values of the packed object data. This is new in v2 so compressed data can be copied directly from pack to pack during repacking without undetected data corruption.
A table of 4-byte offset values (in network byte order). These are usually 31-bit pack file offsets, but large offsets are encoded as an index into the next table with the msbit set.
A table of 8-byte offset entries (empty for pack files less than 2 GiB). Pack files are organized with heavily used objects toward the front, so most object references should not need to refer to this table.
The same trailer as a v1 pack file:
© 2005–2018 Linus Torvalds and others
Licensed under the GNU General Public License version 2.
https://git-scm.com/docs/pack-format