class matplotlib.scale.InvertedLog10Transform(shorthand_name=None) [source]
Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 10.0 inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.InvertedLog2Transform(shorthand_name=None) [source]
Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 2.0 inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.InvertedLogTransform(base) [source]
Bases: matplotlib.scale.InvertedLogTransformBase
inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.InvertedLogTransformBase(shorthand_name=None) [source]
Bases: matplotlib.transforms.Transform
Creates a new TransformNode.
| Parameters: |
|
|---|
has_inverse = True input_dims = 1 is_separable = True output_dims = 1 transform_non_affine(a) [source]
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims and returns a numpy array of length output_dims.
class matplotlib.scale.InvertedNaturalLogTransform(shorthand_name=None) [source]
Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 2.718281828459045 inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.InvertedSymmetricalLogTransform(base, linthresh, linscale) [source]
Bases: matplotlib.transforms.Transform
has_inverse = True input_dims = 1 inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True output_dims = 1 transform_non_affine(a) [source]
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims and returns a numpy array of length output_dims.
class matplotlib.scale.LinearScale(axis, **kwargs) [source]
Bases: matplotlib.scale.ScaleBase
The default linear scale.
get_transform() [source]
The transform for linear scaling is just the IdentityTransform.
name = 'linear' set_default_locators_and_formatters(axis) [source]
Set the locators and formatters to reasonable defaults for linear scaling.
class matplotlib.scale.Log10Transform(nonpos='clip') [source]
Bases: matplotlib.scale.LogTransformBase
base = 10.0 inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.Log2Transform(nonpos='clip') [source]
Bases: matplotlib.scale.LogTransformBase
base = 2.0 inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.LogScale(axis, **kwargs) [source]
Bases: matplotlib.scale.ScaleBase
A standard logarithmic scale. Care is taken so non-positive values are not plotted.
For computational efficiency (to push as much as possible to Numpy C code in the common cases), this scale provides different transforms depending on the base of the logarithm:
Log10Transform)Log2Transform)NaturalLogTransform)LogTransform)Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
class InvertedLog10Transform(shorthand_name=None) Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 10.0 inverted() Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class InvertedLog2Transform(shorthand_name=None) Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 2.0 inverted() Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class InvertedLogTransform(base) Bases: matplotlib.scale.InvertedLogTransformBase
inverted() Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class InvertedNaturalLogTransform(shorthand_name=None) Bases: matplotlib.scale.InvertedLogTransformBase
Creates a new TransformNode.
| Parameters: |
|
|---|
base = 2.718281828459045 inverted() Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class Log10Transform(nonpos='clip') Bases: matplotlib.scale.LogTransformBase
base = 10.0 inverted() Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class Log2Transform(nonpos='clip') Bases: matplotlib.scale.LogTransformBase
base = 2.0 inverted() Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class LogTransform(base, nonpos='clip') Bases: matplotlib.scale.LogTransformBase
inverted() Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class LogTransformBase(nonpos='clip') Bases: matplotlib.transforms.Transform
has_inverse = True input_dims = 1 is_separable = True output_dims = 1 transform_non_affine(a) Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims and returns a numpy array of length output_dims.
class NaturalLogTransform(nonpos='clip') Bases: matplotlib.scale.LogTransformBase
base = 2.718281828459045 inverted() Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
limit_range_for_scale(vmin, vmax, minpos) [source]
Limit the domain to positive values.
name = 'log' set_default_locators_and_formatters(axis) [source]
Set the locators and formatters to specialized versions for log scaling.
class matplotlib.scale.LogTransform(base, nonpos='clip') [source]
Bases: matplotlib.scale.LogTransformBase
inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.LogTransformBase(nonpos='clip') [source]
Bases: matplotlib.transforms.Transform
has_inverse = True input_dims = 1 is_separable = True output_dims = 1 transform_non_affine(a) [source]
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims and returns a numpy array of length output_dims.
class matplotlib.scale.LogisticTransform(nonpos='mask') [source]
Bases: matplotlib.transforms.Transform
has_inverse = True input_dims = 1 inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True output_dims = 1 transform_non_affine(a) [source]
logistic transform (base 10)
class matplotlib.scale.LogitScale(axis, nonpos='mask') [source]
Bases: matplotlib.scale.ScaleBase
Logit scale for data between zero and one, both excluded.
This scale is similar to a log scale close to zero and to one, and almost linear around 0.5. It maps the interval ]0, 1[ onto ]-infty, +infty[.
get_transform() [source]
Return a LogitTransform instance.
limit_range_for_scale(vmin, vmax, minpos) [source]
Limit the domain to values between 0 and 1 (excluded).
name = 'logit' class matplotlib.scale.LogitTransform(nonpos='mask') [source]
Bases: matplotlib.transforms.Transform
has_inverse = True input_dims = 1 inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True output_dims = 1 transform_non_affine(a) [source]
logit transform (base 10), masked or clipped
class matplotlib.scale.NaturalLogTransform(nonpos='clip') [source]
Bases: matplotlib.scale.LogTransformBase
base = 2.718281828459045 inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
class matplotlib.scale.ScaleBase [source]
Bases: object
The base class for all scales.
Scales are separable transformations, working on a single dimension.
Any subclasses will want to override:
limit_range_for_scale(vmin, vmax, minpos) [source]
Returns the range vmin, vmax, possibly limited to the domain supported by this scale.
class matplotlib.scale.SymmetricalLogScale(axis, **kwargs) [source]
Bases: matplotlib.scale.ScaleBase
The symmetrical logarithmic scale is logarithmic in both the positive and negative directions from the origin.
Since the values close to zero tend toward infinity, there is a need to have a range around zero that is linear. The parameter linthresh allows the user to specify the size of this range (-linthresh, linthresh).
Where to place the subticks between each major tick. Should be a sequence of integers. For example, in a log10 scale: [2, 3, 4, 5, 6, 7, 8, 9]
will place 8 logarithmically spaced minor ticks between each major tick.
class InvertedSymmetricalLogTransform(base, linthresh, linscale) Bases: matplotlib.transforms.Transform
has_inverse = True input_dims = 1 inverted() Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True output_dims = 1 transform_non_affine(a) Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims and returns a numpy array of length output_dims.
class SymmetricalLogTransform(base, linthresh, linscale) Bases: matplotlib.transforms.Transform
has_inverse = True input_dims = 1 inverted() Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True output_dims = 1 transform_non_affine(a) Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims and returns a numpy array of length output_dims.
get_transform() [source]
Return a SymmetricalLogTransform instance.
name = 'symlog' set_default_locators_and_formatters(axis) [source]
Set the locators and formatters to specialized versions for symmetrical log scaling.
class matplotlib.scale.SymmetricalLogTransform(base, linthresh, linscale) [source]
Bases: matplotlib.transforms.Transform
has_inverse = True input_dims = 1 inverted() [source]
Return the corresponding inverse transformation.
The return value of this method should be treated as temporary. An update to self does not cause a corresponding update to its inverted copy.
x === self.inverted().transform(self.transform(x))
is_separable = True output_dims = 1 transform_non_affine(a) [source]
Performs only the non-affine part of the transformation.
transform(values) is always equivalent to transform_affine(transform_non_affine(values)).
In non-affine transformations, this is generally equivalent to transform(values). In affine transformations, this is always a no-op.
Accepts a numpy array of shape (N x input_dims) and returns a numpy array of shape (N x output_dims).
Alternatively, accepts a numpy array of length input_dims and returns a numpy array of length output_dims.
matplotlib.scale.get_scale_docs() [source]
Helper function for generating docstrings related to scales.
matplotlib.scale.get_scale_names() [source]
matplotlib.scale.register_scale(scale_class) [source]
Register a new kind of scale.
scale_class must be a subclass of ScaleBase.
matplotlib.scale.scale_factory(scale, axis, **kwargs) [source]
Return a scale class by name.
ACCEPTS: [ linear | log | logit | symlog ]
© 2012–2018 Matplotlib Development Team. All rights reserved.
Licensed under the Matplotlib License Agreement.
https://matplotlib.org/3.0.0/api/scale_api.html