class numpy.recarray [source]
Construct an ndarray that allows field access using attributes.
Arrays may have a data-types containing fields, analogous to columns in a spread sheet. An example is [(x, int), (y, float)], where each entry in the array is a pair of (int, float). Normally, these attributes are accessed using dictionary lookups such as arr['x'] and arr['y']. Record arrays allow the fields to be accessed as members of the array, using arr.x and arr.y.
| Parameters: |
shape : tuple Shape of output array. dtype : data-type, optional The desired data-type. By default, the data-type is determined from formats : list of data-types, optional A list containing the data-types for the different columns, e.g. names : tuple of str, optional The name of each column, e.g. buf : buffer, optional By default, a new array is created of the given shape and data-type. If |
|---|---|
| Returns: |
rec : recarray Empty array of the given shape and type. |
| Other Parameters: | |
|
titles : tuple of str, optional Aliases for column names. For example, if byteorder : {‘<’, ‘>’, ‘=’}, optional Byte-order for all fields. aligned : bool, optional Align the fields in memory as the C-compiler would. strides : tuple of ints, optional Buffer ( offset : int, optional Start reading buffer ( order : {‘C’, ‘F’}, optional Row-major (C-style) or column-major (Fortran-style) order. | |
See also
rec.fromrecords record
recarray.format_parser
This constructor can be compared to empty: it creates a new record array but does not fill it with data. To create a record array from data, use one of the following methods:
arr.view(np.recarray)
buf keyword.np.rec.fromrecords.Create an array with two fields, x and y:
>>> x = np.array([(1.0, 2), (3.0, 4)], dtype=[('x', float), ('y', int)])
>>> x
array([(1.0, 2), (3.0, 4)],
dtype=[('x', '<f8'), ('y', '<i4')])
>>> x['x'] array([ 1., 3.])
View the array as a record array:
>>> x = x.view(np.recarray)
>>> x.x array([ 1., 3.])
>>> x.y array([2, 4])
Create a new, empty record array:
>>> np.recarray((2,),
... dtype=[('x', int), ('y', float), ('z', int)])
rec.array([(-1073741821, 1.2249118382103472e-301, 24547520),
(3471280, 1.2134086255804012e-316, 0)],
dtype=[('x', '<i4'), ('y', '<f8'), ('z', '<i4')])
T | Same as self.transpose(), except that self is returned if self.ndim < 2. |
base | Base object if memory is from some other object. |
ctypes | An object to simplify the interaction of the array with the ctypes module. |
data | Python buffer object pointing to the start of the array’s data. |
dtype | Data-type of the array’s elements. |
flags | Information about the memory layout of the array. |
flat | A 1-D iterator over the array. |
imag | The imaginary part of the array. |
itemsize | Length of one array element in bytes. |
nbytes | Total bytes consumed by the elements of the array. |
ndim | Number of array dimensions. |
real | The real part of the array. |
shape | Tuple of array dimensions. |
size | Number of elements in the array. |
strides | Tuple of bytes to step in each dimension when traversing an array. |
all([axis, out, keepdims]) | Returns True if all elements evaluate to True. |
any([axis, out, keepdims]) | Returns True if any of the elements of a evaluate to True. |
argmax([axis, out]) | Return indices of the maximum values along the given axis. |
argmin([axis, out]) | Return indices of the minimum values along the given axis of a. |
argpartition(kth[, axis, kind, order]) | Returns the indices that would partition this array. |
argsort([axis, kind, order]) | Returns the indices that would sort this array. |
astype(dtype[, order, casting, subok, copy]) | Copy of the array, cast to a specified type. |
byteswap([inplace]) | Swap the bytes of the array elements |
choose(choices[, out, mode]) | Use an index array to construct a new array from a set of choices. |
clip([min, max, out]) | Return an array whose values are limited to [min, max]. |
compress(condition[, axis, out]) | Return selected slices of this array along given axis. |
conj() | Complex-conjugate all elements. |
conjugate() | Return the complex conjugate, element-wise. |
copy([order]) | Return a copy of the array. |
cumprod([axis, dtype, out]) | Return the cumulative product of the elements along the given axis. |
cumsum([axis, dtype, out]) | Return the cumulative sum of the elements along the given axis. |
diagonal([offset, axis1, axis2]) | Return specified diagonals. |
dot(b[, out]) | Dot product of two arrays. |
dump(file) | Dump a pickle of the array to the specified file. |
dumps() | Returns the pickle of the array as a string. |
field(attr[, val]) | |
fill(value) | Fill the array with a scalar value. |
flatten([order]) | Return a copy of the array collapsed into one dimension. |
getfield(dtype[, offset]) | Returns a field of the given array as a certain type. |
item(*args) | Copy an element of an array to a standard Python scalar and return it. |
itemset(*args) | Insert scalar into an array (scalar is cast to array’s dtype, if possible) |
max([axis, out, keepdims]) | Return the maximum along a given axis. |
mean([axis, dtype, out, keepdims]) | Returns the average of the array elements along given axis. |
min([axis, out, keepdims]) | Return the minimum along a given axis. |
newbyteorder([new_order]) | Return the array with the same data viewed with a different byte order. |
nonzero() | Return the indices of the elements that are non-zero. |
partition(kth[, axis, kind, order]) | Rearranges the elements in the array in such a way that value of the element in kth position is in the position it would be in a sorted array. |
prod([axis, dtype, out, keepdims]) | Return the product of the array elements over the given axis |
ptp([axis, out]) | Peak to peak (maximum - minimum) value along a given axis. |
put(indices, values[, mode]) | Set a.flat[n] = values[n] for all n in indices. |
ravel([order]) | Return a flattened array. |
repeat(repeats[, axis]) | Repeat elements of an array. |
reshape(shape[, order]) | Returns an array containing the same data with a new shape. |
resize(new_shape[, refcheck]) | Change shape and size of array in-place. |
round([decimals, out]) | Return a with each element rounded to the given number of decimals. |
searchsorted(v[, side, sorter]) | Find indices where elements of v should be inserted in a to maintain order. |
setfield(val, dtype[, offset]) | Put a value into a specified place in a field defined by a data-type. |
setflags([write, align, uic]) | Set array flags WRITEABLE, ALIGNED, (WRITEBACKIFCOPY and UPDATEIFCOPY), respectively. |
sort([axis, kind, order]) | Sort an array, in-place. |
squeeze([axis]) | Remove single-dimensional entries from the shape of a. |
std([axis, dtype, out, ddof, keepdims]) | Returns the standard deviation of the array elements along given axis. |
sum([axis, dtype, out, keepdims]) | Return the sum of the array elements over the given axis. |
swapaxes(axis1, axis2) | Return a view of the array with axis1 and axis2 interchanged. |
take(indices[, axis, out, mode]) | Return an array formed from the elements of a at the given indices. |
tobytes([order]) | Construct Python bytes containing the raw data bytes in the array. |
tofile(fid[, sep, format]) | Write array to a file as text or binary (default). |
tolist() | Return the array as a (possibly nested) list. |
tostring([order]) | Construct Python bytes containing the raw data bytes in the array. |
trace([offset, axis1, axis2, dtype, out]) | Return the sum along diagonals of the array. |
transpose(*axes) | Returns a view of the array with axes transposed. |
var([axis, dtype, out, ddof, keepdims]) | Returns the variance of the array elements, along given axis. |
view([dtype, type]) | New view of array with the same data. |
© 2008–2017 NumPy Developers
Licensed under the NumPy License.
https://docs.scipy.org/doc/numpy-1.14.2/reference/generated/numpy.recarray.html