class pandas.Categorical(values, categories=None, ordered=None, dtype=None, fastpath=False) [source]
Represents a categorical variable in classic R / S-plus fashion
Categoricals can only take on only a limited, and usually fixed, number of possible values (categories). In contrast to statistical categorical variables, a Categorical might have an order, but numerical operations (additions, divisions, …) are not possible.
All values of the Categorical are either in categories or np.nan. Assigning values outside of categories will raise a ValueError. Order is defined by the order of the categories, not lexical order of the values.
| Parameters: |
values : list-like The values of the categorical. If categories are given, values not in categories will be replaced with NaN. categories : Index-like (unique), optional The unique categories for this categorical. If not given, the categories are assumed to be the unique values of values. ordered : boolean, (default False) Whether or not this categorical is treated as a ordered categorical. If not given, the resulting categorical will not be ordered. dtype : CategoricalDtype An instance of New in version 0.21.0. |
|---|---|
| Raises: |
ValueError If the categories do not validate. TypeError If an explicit |
See also
pandas.api.types.CategoricalDtype
CategoricalIndex
Categorical
See the user guide for more.
>>> pd.Categorical([1, 2, 3, 1, 2, 3]) [1, 2, 3, 1, 2, 3] Categories (3, int64): [1, 2, 3]
>>> pd.Categorical(['a', 'b', 'c', 'a', 'b', 'c']) [a, b, c, a, b, c] Categories (3, object): [a, b, c]
Ordered Categoricals can be sorted according to the custom order of the categories and can have a min and max value.
>>> c = pd.Categorical(['a','b','c','a','b','c'], ordered=True, ... categories=['c', 'b', 'a']) >>> c [a, b, c, a, b, c] Categories (3, object): [c < b < a] >>> c.min() 'c'
categories | The categories of this categorical. |
codes | The category codes of this categorical. |
ordered | Whether the categories have an ordered relationship |
dtype | The CategoricalDtype for this instance |
from_codes(codes, categories[, ordered]) | Make a Categorical type from codes and categories arrays. |
__array__([dtype]) | The numpy array interface. |
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Categorical.html