GroupBy.pipe(func, *args, **kwargs) [source]
Apply a function func with arguments to this GroupBy object and return the function’s result.
New in version 0.21.0.
Use .pipe when you want to improve readability by chaining together functions that expect Series, DataFrames, GroupBy or Resampler objects. Instead of writing
>>> h(g(f(df.groupby('group')), arg1=a), arg2=b, arg3=c)
You can write
>>> (df.groupby('group')
... .pipe(f)
... .pipe(g, arg1=a)
... .pipe(h, arg2=b, arg3=c))
which is much more readable.
| Parameters: |
func : callable or tuple of (callable, string) Function to apply to this GroupBy object or, alternatively, a args : iterable, optional positional arguments passed into kwargs : dict, optional a dictionary of keyword arguments passed into |
|---|---|
| Returns: |
|
See also
pandas.Series.pipe
pandas.DataFrame.pipe
apply
See more here
>>> df = pd.DataFrame({'A': 'a b a b'.split(), 'B': [1, 2, 3, 4]})
>>> df
A B
0 a 1
1 b 2
2 a 3
3 b 4
To get the difference between each groups maximum and minimum value in one pass, you can do
>>> df.groupby('A').pipe(lambda x: x.max() - x.min())
B
A
a 2
b 2
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.core.groupby.GroupBy.pipe.html