Resampler.bfill(limit=None) [source]
Backward fill the new missing values in the resampled data.
In statistics, imputation is the process of replacing missing data with substituted values [R31]. When resampling data, missing values may appear (e.g., when the resampling frequency is higher than the original frequency). The backward fill will replace NaN values that appeared in the resampled data with the next value in the original sequence. Missing values that existed in the orginal data will not be modified.
| Parameters: |
limit : integer, optional Limit of how many values to fill. |
|---|---|
| Returns: |
Series, DataFrame An upsampled Series or DataFrame with backward filled NaN values. |
See also
bfill
fillna
nearest
pad
pandas.Series.fillna
pandas.DataFrame.fillna
| [R31] | (1, 2) https://en.wikipedia.org/wiki/Imputation_(statistics) |
Resampling a Series:
>>> s = pd.Series([1, 2, 3],
... index=pd.date_range('20180101', periods=3, freq='h'))
>>> s
2018-01-01 00:00:00 1
2018-01-01 01:00:00 2
2018-01-01 02:00:00 3
Freq: H, dtype: int64
>>> s.resample('30min').backfill()
2018-01-01 00:00:00 1
2018-01-01 00:30:00 2
2018-01-01 01:00:00 2
2018-01-01 01:30:00 3
2018-01-01 02:00:00 3
Freq: 30T, dtype: int64
>>> s.resample('15min').backfill(limit=2)
2018-01-01 00:00:00 1.0
2018-01-01 00:15:00 NaN
2018-01-01 00:30:00 2.0
2018-01-01 00:45:00 2.0
2018-01-01 01:00:00 2.0
2018-01-01 01:15:00 NaN
2018-01-01 01:30:00 3.0
2018-01-01 01:45:00 3.0
2018-01-01 02:00:00 3.0
Freq: 15T, dtype: float64
Resampling a DataFrame that has missing values:
>>> df = pd.DataFrame({'a': [2, np.nan, 6], 'b': [1, 3, 5]},
... index=pd.date_range('20180101', periods=3,
... freq='h'))
>>> df
a b
2018-01-01 00:00:00 2.0 1
2018-01-01 01:00:00 NaN 3
2018-01-01 02:00:00 6.0 5
>>> df.resample('30min').backfill()
a b
2018-01-01 00:00:00 2.0 1
2018-01-01 00:30:00 NaN 3
2018-01-01 01:00:00 NaN 3
2018-01-01 01:30:00 6.0 5
2018-01-01 02:00:00 6.0 5
>>> df.resample('15min').backfill(limit=2)
a b
2018-01-01 00:00:00 2.0 1.0
2018-01-01 00:15:00 NaN NaN
2018-01-01 00:30:00 NaN 3.0
2018-01-01 00:45:00 NaN 3.0
2018-01-01 01:00:00 NaN 3.0
2018-01-01 01:15:00 NaN NaN
2018-01-01 01:30:00 6.0 5.0
2018-01-01 01:45:00 6.0 5.0
2018-01-01 02:00:00 6.0 5.0
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.core.resample.Resampler.bfill.html