Expanding.var(ddof=1, *args, **kwargs) [source]
Calculate unbiased expanding variance.
Normalized by N-1 by default. This can be changed using the ddof argument.
| Parameters: |
ddof : int, default 1 Delta Degrees of Freedom. The divisor used in calculations is *args, **kwargs For NumPy compatibility. No additional arguments are used. |
|---|---|
| Returns: |
Series or DataFrame Returns the same object type as the caller of the expanding calculation. |
See also
Series.expanding DataFrame.expanding Series.var DataFrame.var numpy.var
The default ddof of 1 used in Series.var() is different than the default ddof of 0 in numpy.var().
A minimum of 1 period is required for the rolling calculation.
>>> s = pd.Series([5, 5, 6, 7, 5, 5, 5]) >>> s.rolling(3).var() 0 NaN 1 NaN 2 0.333333 3 1.000000 4 1.000000 5 1.333333 6 0.000000 dtype: float64
>>> s.expanding(3).var() 0 NaN 1 NaN 2 0.333333 3 0.916667 4 0.800000 5 0.700000 6 0.619048 dtype: float64
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.core.window.Expanding.var.html