Rolling.kurt(**kwargs) [source]
Calculate unbiased rolling kurtosis.
This function uses Fisher’s definition of kurtosis without bias.
| Parameters: |
**kwargs Under Review. |
|---|---|
| Returns: |
Series or DataFrame Returned object type is determined by the caller of the rolling calculation |
See also
Series.rolling DataFrame.rolling Series.kurt DataFrame.kurt scipy.stats.skew
scipy.stats.kurtosis
A minimum of 4 periods is required for the rolling calculation.
The example below will show a rolling calculation with a window size of four matching the equivalent function call using scipy.stats.
>>> arr = [1, 2, 3, 4, 999]
>>> fmt = "{0:.6f}" # limit the printed precision to 6 digits
>>> import scipy.stats
>>> print(fmt.format(scipy.stats.kurtosis(arr[:-1], bias=False)))
-1.200000
>>> print(fmt.format(scipy.stats.kurtosis(arr[1:], bias=False)))
3.999946
>>> s = pd.Series(arr)
>>> s.rolling(4).kurt()
0 NaN
1 NaN
2 NaN
3 -1.200000
4 3.999946
dtype: float64
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.core.window.Rolling.kurt.html