DataFrame.applymap(func) [source]
Apply a function to a Dataframe elementwise.
This method applies a function that accepts and returns a scalar to every element of a DataFrame.
| Parameters: |
func : callable Python function, returns a single value from a single value. |
|---|---|
| Returns: |
DataFrame Transformed DataFrame. |
See also
DataFrame.apply
>>> df = pd.DataFrame([[1, 2.12], [3.356, 4.567]])
>>> df
0 1
0 1.000 2.120
1 3.356 4.567
>>> df.applymap(lambda x: len(str(x))) 0 1 0 3 4 1 5 5
Note that a vectorized version of func often exists, which will be much faster. You could square each number elementwise.
>>> df.applymap(lambda x: x**2)
0 1
0 1.000000 4.494400
1 11.262736 20.857489
But it’s better to avoid applymap in that case.
>>> df ** 2
0 1
0 1.000000 4.494400
1 11.262736 20.857489
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.applymap.html