DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation='linear') [source]
Return values at the given quantile over requested axis, a la numpy.percentile.
| Parameters: |
q : float or array-like, default 0.5 (50% quantile) 0 <= q <= 1, the quantile(s) to compute axis : {0, 1, ‘index’, ‘columns’} (default 0) 0 or ‘index’ for row-wise, 1 or ‘columns’ for column-wise numeric_only : boolean, default True If False, the quantile of datetime and timedelta data will be computed as well interpolation : {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’} New in version 0.18.0. This optional parameter specifies the interpolation method to use, when the desired quantile lies between two data points
|
|---|---|
| Returns: |
quantiles : Series or DataFrame
|
See also
>>> df = pd.DataFrame(np.array([[1, 1], [2, 10], [3, 100], [4, 100]]),
columns=['a', 'b'])
>>> df.quantile(.1)
a 1.3
b 3.7
dtype: float64
>>> df.quantile([.1, .5])
a b
0.1 1.3 3.7
0.5 2.5 55.0
Specifying numeric_only=False will also compute the quantile of datetime and timedelta data.
>>> df = pd.DataFrame({'A': [1, 2],
'B': [pd.Timestamp('2010'),
pd.Timestamp('2011')],
'C': [pd.Timedelta('1 days'),
pd.Timedelta('2 days')]})
>>> df.quantile(0.5, numeric_only=False)
A 1.5
B 2010-07-02 12:00:00
C 1 days 12:00:00
Name: 0.5, dtype: object
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.quantile.html