DataFrame.to_xarray() [source]
Return an xarray object from the pandas object.
| Returns: |
|
|---|
See the xarray docs
>>> df = pd.DataFrame({'A' : [1, 1, 2],
'B' : ['foo', 'bar', 'foo'],
'C' : np.arange(4.,7)})
>>> df
A B C
0 1 foo 4.0
1 1 bar 5.0
2 2 foo 6.0
>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (index: 3)
Coordinates:
* index (index) int64 0 1 2
Data variables:
A (index) int64 1 1 2
B (index) object 'foo' 'bar' 'foo'
C (index) float64 4.0 5.0 6.0
>>> df = pd.DataFrame({'A' : [1, 1, 2],
'B' : ['foo', 'bar', 'foo'],
'C' : np.arange(4.,7)}
).set_index(['B','A'])
>>> df
C
B A
foo 1 4.0
bar 1 5.0
foo 2 6.0
>>> df.to_xarray()
<xarray.Dataset>
Dimensions: (A: 2, B: 2)
Coordinates:
* B (B) object 'bar' 'foo'
* A (A) int64 1 2
Data variables:
C (B, A) float64 5.0 nan 4.0 6.0
>>> p = pd.Panel(np.arange(24).reshape(4,3,2),
items=list('ABCD'),
major_axis=pd.date_range('20130101', periods=3),
minor_axis=['first', 'second'])
>>> p
<class 'pandas.core.panel.Panel'>
Dimensions: 4 (items) x 3 (major_axis) x 2 (minor_axis)
Items axis: A to D
Major_axis axis: 2013-01-01 00:00:00 to 2013-01-03 00:00:00
Minor_axis axis: first to second
>>> p.to_xarray()
<xarray.DataArray (items: 4, major_axis: 3, minor_axis: 2)>
array([[[ 0, 1],
[ 2, 3],
[ 4, 5]],
[[ 6, 7],
[ 8, 9],
[10, 11]],
[[12, 13],
[14, 15],
[16, 17]],
[[18, 19],
[20, 21],
[22, 23]]])
Coordinates:
* items (items) object 'A' 'B' 'C' 'D'
* major_axis (major_axis) datetime64[ns] 2013-01-01 2013-01-02 2013-01-03 # noqa
* minor_axis (minor_axis) object 'first' 'second'
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.DataFrame.to_xarray.html