pandas.isnull(obj) [source]
Detect missing values for an array-like object.
This function takes a scalar or array-like object and indictates whether values are missing (NaN in numeric arrays, None or NaN in object arrays, NaT in datetimelike).
| Parameters: |
obj : scalar or array-like Object to check for null or missing values. |
|---|---|
| Returns: |
bool or array-like of bool For scalar input, returns a scalar boolean. For array input, returns an array of boolean indicating whether each corresponding element is missing. |
See also
notna
Series.isna
DataFrame.isna
Index.isna
Scalar arguments (including strings) result in a scalar boolean.
>>> pd.isna('dog')
False
>>> pd.isna(np.nan) True
ndarrays result in an ndarray of booleans.
>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
>>> array
array([[ 1., nan, 3.],
[ 4., 5., nan]])
>>> pd.isna(array)
array([[False, True, False],
[False, False, True]])
For indexes, an ndarray of booleans is returned.
>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
... "2017-07-08"])
>>> index
DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],
dtype='datetime64[ns]', freq=None)
>>> pd.isna(index)
array([False, False, True, False])
For Series and DataFrame, the same type is returned, containing booleans.
>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
>>> df
0 1 2
0 ant bee cat
1 dog None fly
>>> pd.isna(df)
0 1 2
0 False False False
1 False True False
>>> pd.isna(df[1]) 0 False 1 True Name: 1, dtype: bool
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.isnull.html