Panel.any(axis=0, bool_only=None, skipna=True, level=None, **kwargs) [source]
Return whether any element is True over requested axis.
Unlike DataFrame.all(), this performs an or operation. If any of the values along the specified axis is True, this will return True.
| Parameters: |
axis : {0 or ‘index’, 1 or ‘columns’, None}, default 0 Indicate which axis or axes should be reduced.
skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a DataFrame. bool_only : boolean, default None Include only boolean columns. If None, will attempt to use everything, then use only boolean data. Not implemented for Series. **kwargs : any, default None Additional keywords have no effect but might be accepted for compatibility with NumPy. |
|---|---|
| Returns: |
|
See also
pandas.DataFrame.all
Series
For Series input, the output is a scalar indicating whether any element is True.
>>> pd.Series([True, False]).any() True
DataFrame
Whether each column contains at least one True element (the default).
>>> df = pd.DataFrame({"A": [1, 2], "B": [0, 2], "C": [0, 0]})
>>> df
A B C
0 1 0 0
1 2 2 0
>>> df.any() A True B True C False dtype: bool
Aggregating over the columns.
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 2]})
>>> df
A B
0 True 1
1 False 2
>>> df.any(axis='columns') 0 True 1 True dtype: bool
>>> df = pd.DataFrame({"A": [True, False], "B": [1, 0]})
>>> df
A B
0 True 1
1 False 0
>>> df.any(axis='columns') 0 True 1 False dtype: bool
Aggregating over the entire DataFrame with axis=None.
>>> df.any(axis=None) True
any for an empty DataFrame is an empty Series.
>>> pd.DataFrame([]).any() Series([], dtype: bool)
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Panel.any.html