Panel.astype(dtype, copy=True, errors='raise', **kwargs) [source]
Cast a pandas object to a specified dtype dtype.
| Parameters: |
dtype : data type, or dict of column name -> data type Use a numpy.dtype or Python type to cast entire pandas object to the same type. Alternatively, use {col: dtype, …}, where col is a column label and dtype is a numpy.dtype or Python type to cast one or more of the DataFrame’s columns to column-specific types. copy : bool, default True. Return a copy when errors : {‘raise’, ‘ignore’}, default ‘raise’. Control raising of exceptions on invalid data for provided dtype.
New in version 0.20.0. raise_on_error : raise on invalid input Deprecated since version 0.20.0: Use
|
|---|---|
| Returns: |
|
See also
pandas.to_datetime
pandas.to_timedelta
pandas.to_numeric
numpy.ndarray.astype
>>> ser = pd.Series([1, 2], dtype='int32')
>>> ser
0 1
1 2
dtype: int32
>>> ser.astype('int64')
0 1
1 2
dtype: int64
Convert to categorical type:
>>> ser.astype('category')
0 1
1 2
dtype: category
Categories (2, int64): [1, 2]
Convert to ordered categorical type with custom ordering:
>>> ser.astype('category', ordered=True, categories=[2, 1])
0 1
1 2
dtype: category
Categories (2, int64): [2 < 1]
Note that using copy=False and changing data on a new pandas object may propagate changes:
>>> s1 = pd.Series([1,2])
>>> s2 = s1.astype('int64', copy=False)
>>> s2[0] = 10
>>> s1 # note that s1[0] has changed too
0 10
1 2
dtype: int64
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Panel.astype.html