Panel.cummin(axis=None, skipna=True, *args, **kwargs) [source]
Return cumulative minimum over a DataFrame or Series axis.
Returns a DataFrame or Series of the same size containing the cumulative minimum.
| Parameters: |
axis : {0 or ‘index’, 1 or ‘columns’}, default 0 The index or the name of the axis. 0 is equivalent to None or ‘index’. skipna : boolean, default True Exclude NA/null values. If an entire row/column is NA, the result will be NA. *args, **kwargs : Additional keywords have no effect but might be accepted for compatibility with NumPy. |
|---|---|
| Returns: |
|
See also
pandas.core.window.Expanding.min
NaN values.Panel.min
Panel.cummax
Panel.cummin
Panel.cumsum
Panel.cumprod
Series
>>> s = pd.Series([2, np.nan, 5, -1, 0]) >>> s 0 2.0 1 NaN 2 5.0 3 -1.0 4 0.0 dtype: float64
By default, NA values are ignored.
>>> s.cummin() 0 2.0 1 NaN 2 2.0 3 -1.0 4 -1.0 dtype: float64
To include NA values in the operation, use skipna=False
>>> s.cummin(skipna=False) 0 2.0 1 NaN 2 NaN 3 NaN 4 NaN dtype: float64
DataFrame
>>> df = pd.DataFrame([[2.0, 1.0],
... [3.0, np.nan],
... [1.0, 0.0]],
... columns=list('AB'))
>>> df
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
By default, iterates over rows and finds the minimum in each column. This is equivalent to axis=None or axis='index'.
>>> df.cummin()
A B
0 2.0 1.0
1 2.0 NaN
2 1.0 0.0
To iterate over columns and find the minimum in each row, use axis=1
>>> df.cummin(axis=1)
A B
0 2.0 1.0
1 3.0 NaN
2 1.0 0.0
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.Panel.cummin.html