pandas.read_excel(io, sheet_name=0, header=0, names=None, index_col=None, usecols=None, squeeze=False, dtype=None, engine=None, converters=None, true_values=None, false_values=None, skiprows=None, nrows=None, na_values=None, parse_dates=False, date_parser=None, thousands=None, comment=None, skipfooter=0, convert_float=True, **kwds) [source]
Read an Excel table into a pandas DataFrame
| Parameters: |
io : string, path object (pathlib.Path or py._path.local.LocalPath), file-like object, pandas ExcelFile, or xlrd workbook. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. For instance, a local file could be file://localhost/path/to/workbook.xlsx sheet_name : string, int, mixed list of strings/ints, or None, default 0 Strings are used for sheet names, Integers are used in zero-indexed sheet positions. Lists of strings/integers are used to request multiple sheets. Specify None to get all sheets. str|int -> DataFrame is returned. list|None -> Dict of DataFrames is returned, with keys representing sheets. Available Cases
sheetname : string, int, mixed list of strings/ints, or None, default 0 Deprecated since version 0.21.0: Use header : int, list of ints, default 0 Row (0-indexed) to use for the column labels of the parsed DataFrame. If a list of integers is passed those row positions will be combined into a names : array-like, default None List of column names to use. If file contains no header row, then you should explicitly pass header=None index_col : int, list of ints, default None Column (0-indexed) to use as the row labels of the DataFrame. Pass None if there is no such column. If a list is passed, those columns will be combined into a parse_cols : int or list, default None Deprecated since version 0.21.0: Pass in usecols : int or list, default None
squeeze : boolean, default False If the parsed data only contains one column then return a Series dtype : Type name or dict of column -> type, default None Data type for data or columns. E.g. {‘a’: np.float64, ‘b’: np.int32} Use New in version 0.20.0. engine: string, default None If io is not a buffer or path, this must be set to identify io. Acceptable values are None or xlrd converters : dict, default None Dict of functions for converting values in certain columns. Keys can either be integers or column labels, values are functions that take one input argument, the Excel cell content, and return the transformed content. true_values : list, default None Values to consider as True New in version 0.19.0. false_values : list, default None Values to consider as False New in version 0.19.0. skiprows : list-like Rows to skip at the beginning (0-indexed) nrows : int, default None Number of rows to parse New in version 0.23.0. na_values : scalar, str, list-like, or dict, default None Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: ‘’, ‘#N/A’, ‘#N/A N/A’, ‘#NA’, ‘-1.#IND’, ‘-1.#QNAN’, ‘-NaN’, ‘-nan’, ‘1.#IND’, ‘1.#QNAN’, ‘N/A’, ‘NA’, ‘NULL’, ‘NaN’, ‘n/a’, ‘nan’, ‘null’. keep_default_na : bool, default True If na_values are specified and keep_default_na is False the default NaN values are overridden, otherwise they’re appended to. verbose : boolean, default False Indicate number of NA values placed in non-numeric columns thousands : str, default None Thousands separator for parsing string columns to numeric. Note that this parameter is only necessary for columns stored as TEXT in Excel, any numeric columns will automatically be parsed, regardless of display format. comment : str, default None Comments out remainder of line. Pass a character or characters to this argument to indicate comments in the input file. Any data between the comment string and the end of the current line is ignored. skip_footer : int, default 0 Deprecated since version 0.23.0: Pass in skipfooter : int, default 0 Rows at the end to skip (0-indexed) convert_float : boolean, default True convert integral floats to int (i.e., 1.0 –> 1). If False, all numeric data will be read in as floats: Excel stores all numbers as floats internally |
|---|---|
| Returns: |
parsed : DataFrame or Dict of DataFrames DataFrame from the passed in Excel file. See notes in sheet_name argument for more information on when a Dict of Dataframes is returned. |
An example DataFrame written to a local file
>>> df_out = pd.DataFrame([('string1', 1),
... ('string2', 2),
... ('string3', 3)],
... columns=['Name', 'Value'])
>>> df_out
Name Value
0 string1 1
1 string2 2
2 string3 3
>>> df_out.to_excel('tmp.xlsx')
The file can be read using the file name as string or an open file object:
>>> pd.read_excel('tmp.xlsx')
Name Value
0 string1 1
1 string2 2
2 string3 3
>>> pd.read_excel(open('tmp.xlsx','rb'))
Name Value
0 string1 1
1 string2 2
2 string3 3
Index and header can be specified via the index_col and header arguments
>>> pd.read_excel('tmp.xlsx', index_col=None, header=None)
0 1 2
0 NaN Name Value
1 0.0 string1 1
2 1.0 string2 2
3 2.0 string3 3
Column types are inferred but can be explicitly specified
>>> pd.read_excel('tmp.xlsx', dtype={'Name':str, 'Value':float})
Name Value
0 string1 1.0
1 string2 2.0
2 string3 3.0
True, False, and NA values, and thousands separators have defaults, but can be explicitly specified, too. Supply the values you would like as strings or lists of strings!
>>> pd.read_excel('tmp.xlsx',
... na_values=['string1', 'string2'])
Name Value
0 NaN 1
1 NaN 2
2 string3 3
Comment lines in the excel input file can be skipped using the comment kwarg
>>> df = pd.DataFrame({'a': ['1', '#2'], 'b': ['2', '3']})
>>> df.to_excel('tmp.xlsx', index=False)
>>> pd.read_excel('tmp.xlsx')
a b
0 1 2
1 #2 3
>>> pd.read_excel('tmp.xlsx', comment='#')
a b
0 1 2
© 2008–2012, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
Licensed under the 3-clause BSD License.
http://pandas.pydata.org/pandas-docs/version/0.23.4/generated/pandas.read_excel.html