#include <nn_ops.h>
Local Response Normalization.
The 4-D input
tensor is treated as a 3-D array of 1-D vectors (along the last dimension), and each vector is normalized independently. Within a given vector, each component is divided by the weighted, squared sum of inputs within depth_radius
. In detail,
sqr_sum[a, b, c, d] = sum(input[a, b, c, d - depth_radius : d + depth_radius + 1] ** 2) output = input / (bias + alpha * sqr_sum) ** beta
For details, see Krizhevsky et al., ImageNet classification with deep convolutional neural networks (NIPS 2012).
Arguments:
Optional attributes (see Attrs
):
Returns:
Output
: The output tensor. Constructors and Destructors | |
---|---|
LRN(const ::tensorflow::Scope & scope, ::tensorflow::Input input) | |
LRN(const ::tensorflow::Scope & scope, ::tensorflow::Input input, const LRN::Attrs & attrs) |
Public attributes | |
---|---|
output |
Public functions | |
---|---|
node() const | ::tensorflow::Node * |
operator::tensorflow::Input() const | |
operator::tensorflow::Output() const |
Public static functions | |
---|---|
Alpha(float x) | |
Beta(float x) | |
Bias(float x) | |
DepthRadius(int64 x) |
Structs | |
---|---|
tensorflow::ops::LRN::Attrs | Optional attribute setters for LRN. |
::tensorflow::Output output
LRN( const ::tensorflow::Scope & scope, ::tensorflow::Input input )
LRN( const ::tensorflow::Scope & scope, ::tensorflow::Input input, const LRN::Attrs & attrs )
::tensorflow::Node * node() const
operator::tensorflow::Input() const
operator::tensorflow::Output() const
Attrs Alpha( float x )
Attrs Beta( float x )
Attrs Bias( float x )
Attrs DepthRadius( int64 x )
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_docs/cc/class/tensorflow/ops/l-r-n.html