Note: Functions takingTensor
arguments can also take anything accepted bytf.convert_to_tensor
.
Note: Elementwise binary operations in TensorFlow follow numpy-style broadcasting.
TensorFlow provides several operations that you can use to add basic arithmetic operators to your graph.
tf.add
tf.subtract
tf.multiply
tf.scalar_mul
tf.div
tf.divide
tf.truediv
tf.floordiv
tf.realdiv
tf.truncatediv
tf.floor_div
tf.truncatemod
tf.floormod
tf.mod
tf.cross
TensorFlow provides several operations that you can use to add basic mathematical functions to your graph.
tf.add_n
tf.abs
tf.negative
tf.sign
tf.reciprocal
tf.square
tf.round
tf.sqrt
tf.rsqrt
tf.pow
tf.exp
tf.expm1
tf.log
tf.log1p
tf.ceil
tf.floor
tf.maximum
tf.minimum
tf.cos
tf.sin
tf.lbeta
tf.tan
tf.acos
tf.asin
tf.atan
tf.cosh
tf.sinh
tf.asinh
tf.acosh
tf.atanh
tf.lgamma
tf.digamma
tf.erf
tf.erfc
tf.squared_difference
tf.igamma
tf.igammac
tf.zeta
tf.polygamma
tf.betainc
tf.rint
TensorFlow provides several operations that you can use to add linear algebra functions on matrices to your graph.
tf.diag
tf.diag_part
tf.trace
tf.transpose
tf.eye
tf.matrix_diag
tf.matrix_diag_part
tf.matrix_band_part
tf.matrix_set_diag
tf.matrix_transpose
tf.matmul
tf.norm
tf.matrix_determinant
tf.matrix_inverse
tf.cholesky
tf.cholesky_solve
tf.matrix_solve
tf.matrix_triangular_solve
tf.matrix_solve_ls
tf.qr
tf.self_adjoint_eig
tf.self_adjoint_eigvals
tf.svd
TensorFlow provides operations that you can use to add tensor functions to your graph.
TensorFlow provides several operations that you can use to add complex number functions to your graph.
TensorFlow provides several operations that you can use to perform common math computations that reduce various dimensions of a tensor.
tf.reduce_sum
tf.reduce_prod
tf.reduce_min
tf.reduce_max
tf.reduce_mean
tf.reduce_all
tf.reduce_any
tf.reduce_logsumexp
tf.count_nonzero
tf.accumulate_n
tf.einsum
TensorFlow provides several operations that you can use to perform scans (running totals) across one axis of a tensor.
TensorFlow provides several operations that you can use to perform common math computations on tensor segments. Here a segmentation is a partitioning of a tensor along the first dimension, i.e. it defines a mapping from the first dimension onto segment_ids
. The segment_ids
tensor should be the size of the first dimension, d0
, with consecutive IDs in the range 0
to k
, where k<d0
. In particular, a segmentation of a matrix tensor is a mapping of rows to segments.
For example:
c = tf.constant([[1,2,3,4], [-1,-2,-3,-4], [5,6,7,8]]) tf.segment_sum(c, tf.constant([0, 0, 1])) ==> [[0 0 0 0] [5 6 7 8]]
tf.segment_sum
tf.segment_prod
tf.segment_min
tf.segment_max
tf.segment_mean
tf.unsorted_segment_sum
tf.sparse_segment_sum
tf.sparse_segment_mean
tf.sparse_segment_sqrt_n
TensorFlow provides several operations that you can use to add sequence comparison and index extraction to your graph. You can use these operations to determine sequence differences and determine the indexes of specific values in a tensor.
© 2018 The TensorFlow Authors. All rights reserved.
Licensed under the Creative Commons Attribution License 3.0.
Code samples licensed under the Apache 2.0 License.
https://www.tensorflow.org/api_guides/python/math_ops